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ABSTRACT

On activation with catalytic amounts of gold(I) complexes, 3-silyloxy 1,6-enynes can react through two alternative pathways. In one, a cascade
reaction consisting of carbocyclization and subsequent pinacol rearrangement takes place. In the second pathway, a heterocyclization is
followed by a Claisen rearrangement. The reaction outcome differs depending on the substitution pattern of the 3-silyloxy 1,6-enynes and,
more importantly, the electronic properties of the gold-bound phosphane ligand.

Within the rapidly developing area of catalysis involving gold
complexes as carbophilic π-acids,1 enyne cycloisomerizations
have been particularly well-studied.2 In this context, cycloi-
somerizations of 1,5-enynes3 and 1,6-enynes4 were found

to produce a great diversity of products via various reaction
cascades. While noble metal-catalyzed reactions involving
1,n-enynes that bear a protected hydroxyl group at the
3-position are rare,5 our preliminary results of employing
3-silyloxy 1,5-enynes6 and 3-methoxy 1,6-enynes7 in cascade
reactions initiated by π-activation led us to investigate the
reactivity of 3-silyloxy 1,6-enynes in the presence of π-acids.
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We were intrigued by the possibility that 3-silyloxy 1,6-
enynes 1 might undergo both a catalyzed domino reaction
consisting of carbocyclization followed by a pinacol rear-
rangement and a domino reaction consisting of heterocy-
clization and subsequent Claisen rearrangement (Figure 1).
In our projected sequence, the cationic intermediate A was
expected to undergo a pinacol-type 1,2-shift5c,6,8 to produce
alkene 2 (path a). On the other hand, heterocyclization should
generate the charged intermediate B that is prone to undergo
a [3,3]-sigmatropic rearrangement upon formation of 3 (path
b).7 In this paper, we report the application of the divergent
reactivity of 3-silyloxy 1,6-enynes in the presence of gold(I)
complexes to the development of novel domino reactions.9,10

Our preliminary investigation focused on the cyclization-
pinacol reaction of 1,6-enyne 1a to ketone 2a (eq 1).11

Reaction of enyne 1a to bicyclic compound 2a in the
presence of cationic triphenylphosphinegold(I) as the catalyst
was examined initially under reaction conditions employed

previously for the cyclization-pinacol reaction of 3-silyloxy
1,5-enynes.6 Under these conditions, the reaction proceeded
smoothly to afford 2a with excellent cis diastereoselectivity
in 72% yield after 5 d at room temperature. Increasing the
reaction temperature to 40 °C led to the anticipated increase
in reaction rate providing the desired product in good yields
after 1 d (71% for X ) SiMe3, 91% for X ) SiEt3). Since
the silylated compounds 1 lack the proton source required
for the protodemetalation of the vinylgold(I) intermediate,
isopropyl alcohol was required as an additive. The use of
methanol under otherwise identical reaction conditions led
to complete decomposition.

Under these conditions, a wide range of 3-silyloxy 1,6-
enynes 1 having aryl, heteroaryl, and alkyl substituents at
the alkyne terminus underwent the gold(I)-catalyzed domino
reaction to carbonyl compounds 2 (eqs 2-4). Notably, the
use of cyclohexanol derivatives led to the formation of cis-
fused bicyclic compounds bearing an all-carbon quaternary
stereocenter.12 Generally, the exocyclic double bond was
exclusively formed with Z-configuration;13 as an exception,
reaction of 2-thienyl compound 1f gave a mixture of both
double bond isomers (dr 45:55). Presumably due to the
crucial stabilization of cationic intermediate A, the reaction
proved strictly limited to 1,6-enynes possessing a substituent
at the C2 position (Figure 1, R1). In all cases, product
formation is consistent with an initial 6-exo-dig cyclization
of the alkene moiety onto gold(I)-complexed alkynes fol-
lowed by a 1,2-alkyl migration that proceeds with ring
contraction.

Interestingly, cyclopentanol-derived silyl ether 1i was
converted within 10 min into a 1:1 mixture of cyclization-
pinacol product 2i13,14 and heterocyclization-Claisen product
3i using Ph3PAu+ as the cationic catalyst (eq 5).15 Changing
the electronic properties of the phosphine ligand had a
significant effect on the selectivity of this transformation.
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Figure 1. Divergent reactivity of 3-silyloxy 1,6-enynes.
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ing [p-MeO(C6H4)]3PAuCl as a more electron-rich gold(I)
complex inverted the selectivity, providing the cyclization-
pinacol product as the major product over the hetero-
cyclization-Claisen pathway. Switching to [(t-Bu)2P(o-
biphenyl]PAuCl significantly improved the selectivity for the
cyclization-pinacol pathway, providing 2i as the almost
exclusive product. These results indicate that subtle variations
on the equilibrium between A/A′ and B such as the
diminished backbonding capacity from the more electron-
deficient complex, (C6F5)3PAu+, may account for the attack
of the “hard” O-nucleophile to access [3,3]-sigmatropic
rearrangement precursor B (Figure 1, path b).17 On the other
hand, effective back-bonding from electron-rich gold(I)
complexes leading to metal-carbenoid intermediate A′ could
then facilitate a pinacol-type reaction outcome (Figure 1, path
a).1c,d

On the basis of the requirement of a carbocation-stabilizing
substituent at the C2-position (Figure 1, R1) to provide

cyclization-pinacol products 2, we then hypothesized that
alkenes 1 not bearing an additional substituent at C2 (e.g.,
R1 ) H) would instead furnish cyclohept-4-enones 3 in the
presence of (C6F5)3PAuCl as the precatalyst. Accordingly, a
number of 3-silyloxy 1,6-enynes 1 were converted into the
corresponding cyclic products 3, whereas complete conver-
sion in CH2Cl2 was generally observed after 10 min at room
temperature (eqs 6 and 7). In sharp contrast to the pinacol-
terminated reactions discussed above, both cyclic and acyclic
substrates 1 were effectively reacted to give 3. Of primary
importance, product formation was not accompanied byprod-
uct resulting from the competitive cyclization-pinacol
sequence.

In summary, we described a synthetically useful gold(I)-
catalyzed reaction from 3-silyloxy 1,6-enynes that provides
access to either cyclization-pinacol products 2 or hetero-
cyclization-Claisen products 3. This is a remarkable ex-
ample of divergence because the reaction outcome not only
derives from substitution pattern of the substrate but is
strongly influenced by the electronic properties of the gold-
bound phosphane ligand. Further investigations on this and
related types of noble metal-catalyzed rearrangements are
ongoing and will be reported in due course.
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